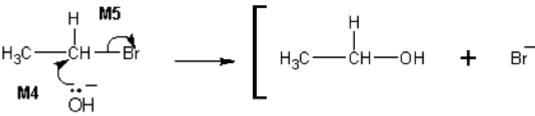
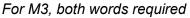
$\begin{array}{rcl} \textbf{M1.(a)} & \textbf{M1} & C_6H_{12}O_6 & \longrightarrow & \textbf{2}CH_3CH_2OH & + & \textbf{2}CO_2 \\ & & & (2C_2H_5OH) \end{array}$ $\begin{array}{rcl} \textit{Mark independently} \\ \textit{For M1 and M3 ignore state symbols and credit multiples} \\ \textit{For M1 and M3 penalise } C_2H_6O \textit{ once only} \end{array}$

- M2 fermentation
- M3 $CH_3CH_2OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$ (C_2H_5OH)
- M4 <u>A specified process</u> e.g. planting / harvesting / transport / extracting sugar / distilling ethanol solution / fertiliser production etc.
- **M5** The specified process <u>uses / burns</u> (fossil) <u>fuel that releases CO₂</u> For M5, "releases / increases carbon emissions" is insufficient as an alternative to <u>releases CO₂</u>

5

(b) **M1** sodium or potassium hydroxide / NaOH / KOH Mark on to M2 from hydroxide ion


M2 depends on correct M1


Ignore OH if KOH/ OH

warm / heat / reflux <u>and</u> aqueous or (aq) or water For M2 ignore "dilute" For M2 penalise T > 100 °C

M3 nucleophilic substitution

Acidified KOH/NaOH or H_2SO_4 with KOH/NaOH loses M1 and M2

NB The arrows here are double-headed

M4 must show an arrow from the lone pair of electrons on the oxygen atom of the negatively charged hydroxide ion to the C atom.

Penalise M4 if covalent NaOH / KOH is used Penalise one mark from M4 or M5 if half-headed arrows are used

M5 must show the movement of a pair of electrons from the

C— Br bond to the Br atom. Mark M5 independently provided it is from their <u>original</u> <u>molecule</u>.

Penalise M5 for formal charge on C of the C–Br or incorrect partial charges on C–Br Penalise once only for a line and two dots to show a bond.

For M4 and M5, award full marks for an $S_{N}1$ mechanism

For M4 and M5, maximum 1 of 2 marks if wrong reactant is used. Penalise M5 if an extra arrow is drawn from the Br of the C–Br bond to, for example, K·span> Do not penalise the use of "sticks"

M6 One statement from

The yield is (very) low / not a high yield OR elimination occurs / ethene formed

- The rate of reaction slow
- Bromoethane has to be manufactured / made first
- <u>Bromoethane</u> is expensive
 For M6 ignore references to other costs and expenses
- (c) **M1** <u>concentrated</u> phosphoric acid / <u>conc</u>. H_3PO_4 *OR* <u>concentrated</u> sulfuric acid /conc. H_2SO_4

Answers in any order Ignore reference to support medium in M1

M2 hydration or (electrophilic) addition

For M3 and M4 any two from

Do not apply the list principle to these three chosen criteria in M3 and M4

<u>Excess</u> ethene

OR Excess steam / water / H₂O

OR remove the ethanol as it forms

OR recycle the ethene

<u>Specified</u> Pressure

50 atm ≤ P ≤ 100 atm

6

OR 5000 kPa ≤ P ≤ 10000 kPa

OR 5 MPa \leq P \leq 10 MPa

HighTemperature unless they give a value that is not in the ranges given here;

OR 300 °C \leq T \leq 600 °C

OR 570 K ≤ T ≤ 870 K

Accept a reference to "low temperature" if they specify a correct temperature range or a correct temperature in the range

[15]

4

M2. (a) to neutralise stomach acidity

OR

as an antacid

OR

eases indigestion/heartburn Ignore milk of magnesia Credit suitable reference to indigestion/laxative/relief of constipation

1

(b) (i) an electron acceptor

OR

(readily) <u>gains/accepts/receives electron(s)</u> NOT an electron pair acceptor Ignore removes/takes away/attracts electrons

1

1

(ii) Br₂ ONLY

Ignore "bromine" Apply the list principle

PhysicsAndMathsTutor.com

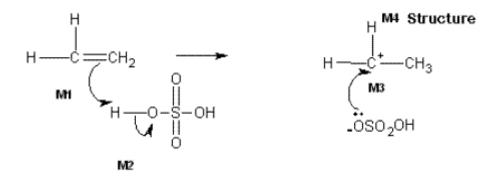
(iii) $H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

OR

SO₄²⁻ + 4H⁺ + 2e⁻ → SO₂ + 2H₂O Ignore state symbols Ignore absence of negative charge on electron Or multiples of equations

1

1


OR

catalyses (the reaction)

OR

to speed up the reaction/increase the rate (of reaction) Ignore "provides H⁺ ions" Accept phonetic spelling

(ii)

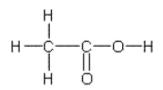
M1 must show an arrow from the double bond towards the H atom of the H – O bond OR HO on a compound with molecular formula for H_2SO_4 (or accept H_2SO_3 here) M1 could be to an H⁺ ion and M2 an independent O – H bond break on a compound with molecular formula for H_2SO_4 or H_2SO_3

M2 must show the breaking of the O - H bond.

- **M3** must show an arrow from the lone pair of electrons on the correct oxygen of the negatively charged ion towards the positively charged carbon atom.
- **M4** is for the structure of the carbocation.

NB The arrows here are double-headed

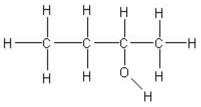
M2 Ignore partial charges unless wrong M3 NOT HSO₄-For M3, credit <u>as shown</u> or <u>-OSO₃H</u> ONLY with the negative charge anywhere on this ion OR <u>correctly</u> drawn out with the negative charge placed correctly on oxygen Max 3 marks for wrong reactant Do not penalise the use of "sticks"


(iii) Primary **OR** 1° (alcohol)

1

1

4


(iv) Displayed formula for ethanoic acid, CH₃COOH

All the bonds must be drawn out and this includes the O - H bond lgnore bond angles.

[11]

M3. (a) M1 <u>Displayed formula</u> for butan-2-ol

M1 displayed formula <u>must</u> have all bonds drawn out, including the O—H but ignore angles Penalise "sticks"

M2 Alcohol X is

H₃C — CH₃ H₃C — CH₃ OH M2 structure must be clearly identifiable as 2-methylpropan-2-ol and may be drawn in a variety of ways.

M3 Alcohol Y is named <u>(2)-methylpropan-1-ol</u> ONLY M3 <u>must be correct name</u>, but ignore structures

3

- (b) M1 The infrared spectrum shows an <u>absorption/peak in the range</u> <u>3230 to 3550</u> (cm⁻¹)(which supports the idea that an alcohol is present) In M1, allow the words "dip", "spike", "low transmittance" and "trough" as alternatives for absorption.
 - M2 Reference to the 'fingerprint region' or below 1500 (cm⁻¹)
 - M3 <u>Match with</u> or <u>same as</u> known sample/database spectra Check the spectrum to see if alcohol OH is labelled and credit.

OR

M2 Run infrared spectra (of the alcohols)

M3 Find which one <u>matches</u> or is the <u>same as</u> this spectrum.

3

(c) **M1** balanced equation $C_6H_{12}O_6 \rightarrow CH_3CH_2CH_2CH_2OH + 2CO_2 + H_2O$ or C_4H_9OH *Or multiples for M1 and M3 In M1 and M3 penalise use of C_4H_10O or butan-2-ol once only*

M2 Any one from

excess/adequate/sufficient/correct amount of/enough/plenty/

a good supply of oxygen or air

• good mixing of the fuel and air/oxygen For M2, do <u>not</u> accept simply "oxygen" or "air" alone Ignore reference to "temperature"

 $\begin{array}{c} \textbf{M3} \ CH_{\scriptscriptstyle 3}CH_{\scriptscriptstyle 2}CH_{\scriptscriptstyle 2}CH_{\scriptscriptstyle 2}OH \ \textbf{+} \ \textbf{6}O_{\scriptscriptstyle 2} \ \textbf{-} \ \textbf{4}CO_{\scriptscriptstyle 2} \ \textbf{+} \ \textbf{5}H_{\scriptscriptstyle 2}O \\ \\ or \ C_{\scriptscriptstyle 4}H_{\scriptscriptstyle 9}OH \end{array}$

M4 A biofuel is a fuel produced from (renewable) biological (re)source(s)

OR

(renewable) (re)source(s) <u>from</u> (a specified) <u>plant(s)/fruit(s)/tree(s)</u> In M4 Ignore references to "carbon neutral" Ignore "sugar" and "glucose"

- (d) **M1** butan-1-ol is a <u>primary or 1°</u> (alcohol)
 - M2 Displayed formula (ONLY) for butanal CH₃CH₂CH₂CHO
 - M3 <u>Displayed formula</u> (ONLY) for butanoic acid CH₃CH₂CH₂COOH

M2 and M3 displayed formula must have all bonds drawn out including the O—H but ignore angles. If butanal and butanoic acid formulae are <u>both</u> correctly given but not displayed, credit one mark out of two.

M4 Oxidation (oxidised) OR Redox

M5 orange to green

Both colours required for M5 Ignore states

[15]

5

4

M4. (a) Three conditions <u>in any order</u> for M1 to M3

- M1 yeast or zymase
- **M2** 30 °C \ge T \le 42 °C
- M3 anaerobic/no oxygen/no air OR neutral pH

M4 $C_6H_{12}O_6 \longrightarrow 2C_2H_6OH + 2CO_2$ OR $2C_6H_{12}O_6 \longrightarrow 4C_2H_6OH + 4CO_2$ *Mark independently Penalise "bacteria" and "phosphoric acid" using the list principle Ignore reference to "aqueous" or "water" (i.e. not part of the list principle*) *Or other multiples*

- (b) **M**1 Carbon-neutral Ignore "biofuel"
 - M2 <u>6 (mol/molecules) CO₂/carbon dioxide taken in/used/used</u> <u>up</u> (to form glucose or in photosynthesis)
 - M3 <u>6 (mol/molecules) CO₂/carbon dioxide</u> given out <u>due to</u> <u>2 (mol/molecules) CO₂/carbon dioxide from fermentation/</u> <u>Process 2 and 4 (mol/molecules) CO₂/carbon dioxide from</u> <u>combustion/Process 3</u> *It is NOT sufficient in M2 and M3 for equations alone without commentary or annotation or calculation*
- 1

4

1

1

(c) M1 (could be scored by a correct mathematical expression)

(Sum of) <u>bonds broken</u> – (Sum of) <u>bonds made/formed = ΔH </u>

OR

 $(\Sigma) \underline{B}_{reactants} - (\Sigma) \underline{B}_{products} = \Delta H$

(where B = <u>bond</u> enthalpy/<u>bond</u> energy) For M1 there must be a <u>correct</u> mathematical expression using ΔH or "enthalpy change"

- M2 Reactants = (+) <u>4719</u> *OR* Products = (-) <u>5750</u>
- **M3** Overall + 4719 5750 = <u>-1031</u> (kJ mol⁻¹) (This is worth 3 marks) Award full marks for correct answer. Ignore units.

Award 1 mark ONLY for +1031

Candidates may use a cycle and gain full marks.

- M4 Mean bond enthalpies are <u>not specific</u> for this reaction OR they are <u>average</u> values from many <u>different</u> <u>compounds/molecules</u> **Do not forget to award this mark**
- 1

3

- (d) **M1** $q = m c \Delta T$ (this mark for correct mathematical formula)
 - M2 = 6688 (J) OR 6.688 (kJ) OR 6.69 (kJ) OR 6.7 (kJ)
 - **M3** 0.46g is 0.01 mol therefore $\Delta H = -669$ kJ mol⁻¹ OR -670 kJmol⁻¹ OR -668.8 kJ mol⁻¹ Award M1, M2 and M3 for <u>correct answer</u> to the calculation Penalise M3 ONLY if correct answer but sign is incorrect In M1, do not penalise incorrect cases in the formula If m = 0.46 or m = 200.46 OR if $\Delta T = 281$, CE and penalise M2 and M3 If c = 4.81 (leads to 7696) penalise M2 ONLY and mark on for M3 = -769.6 OR -770 Ignore incorrect units in M2
 - M4 Incomplete combustion

Do not forget to award this mark. Mark independently

[15]

4